PVP20

Department of Freshman Engineering

Calculus and Linear Algebra

Course		20BS1101		Year			Ι		Sem	Semester		Ι		
Code		Basic Science		Branch			IT		Con	Counce True o		Theory		
Course Category		Basic Science		Dra	Draiicii		IT		Cou	Course Type		Theory		
Credits			3		L-T	L-T-P		3-0-0		Prer	Prerequisites		Nil	
Continuous			30		Semester En		End		70	Tota			10	
Internal				Evaluation		ı			Mar	ks				
Evalu	Evaluation Course Outcomes													
Course Outcomes														
CO1	successful completion of the course, the student will be able to Understand the basic concepts of calculus and linear algebra.(L2)													
CO1 CO2		pply the echelon form to obtain the solution of system of linear equations and eigen												
02		ectors of a matrix.(L3)												
CO3		pply the concepts of calculus to find the series expansion and extremum of a given function												
	,area enclosed by plane curves and volume of the solids. (L3)													
CO4		nalyse the solution set of linear system of equations and nature of the quadratic forms. (L4)												
CO5		nalyse the behaviour of functions using mean value theorems, extremum of the given function												
	and	d limits	s of integ	ration.	(L4)								-	
CO6														
	(Contril	oution of									Outcor	nes &	
	DO									edium, 1		DO 10	DCO1	DCOO
CO1	PO	1 PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1 CO2	3								2	2			1	
CO2	3								2	2			1	
CO4		3								_			1	
CO5		3											1	
CO6	3								2	2			1	
								abus						
Unit N	No.						Syllab	us					Mapped CO's	
1	1 Matrices-Linear System of Equations: Rank of a matrix by Echelon form, Normal form, PAQ form, solving system								vetom	CO1,CO2,				
			nogeneo								orving s	ystem	CO4,CO6	
2			values a					incur e	quation	15.				
								perties.	, Cayle	y-Hami	lton theo	orem	COL	cor
	Eigen values, Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton								CO1,CO2, CO4,CO6					
	theorem, diagonalization of a matrix, quadratic forms and nature of the									04,000				
2		_	atic form											
5	3 Mean Value Theorems: Polle's Theorem Lagrange's mean value theorem. Cauchy's mean value								ue	CO1,CO3, CO5,CO6				
	Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without							40						
proofs).											200,			
4										CO1 CO2				
	Functions of several variables, Jacobian, Functional dependence, maxima and minima of functions of two variables, method of Lagrange's multiplier								CO1,CO3, CO5,CO6					
		and m	inima of	function	ons of	two va	riables	, metho	od of L	agrange	's multij	oliers.		

Department of Freshman Engineering

5	Multiple Integrals: Double integrals, change of order of integration, double integration in polar coordinates, Triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral. Application A roos anglosed by plane auruse.	CO1,CO3, CO5,CO6								
	Application- Areas enclosed by plane curves. Learning Resources									
Text Books										
1.	 B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006 									
	ce Books									
1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.										
e- Reso	e- Resources & other digital material									
2. 3.	https://nptel.ac.in/courses/111/108/111108157/ https://www.nptel.ac.in/courses/111/104/111104125/ https://youtu.be/xDSejIvZmg4 http://202.53.81.118/ -> PVPSIT FED-Moodle									